MODELO DE CLUSTERING BASADO EN REDES NEURONALES PARA IDENTIFICAR EL PERFIL DE LOS ALUMNOS POR SEGMENTO ENFOCADO A LOS SERVICIOS DE TECNOLOGÍAS DE INFORMACIÓN DE LA UNIVERSIDAD PERUANA UNIÓN
Palabras clave:
Algoritmo de K-medias, perfil de alumno, redes neuronales, minería de datos, tecnologías de información, metodología CRIP-DM.Resumen
En la presente investigación se ha aplicado el algoritmo de k-medias del modelo de redes neuronales artificiales, para agrupar e identificar las características que perciben los alumnos con respecto a los servicios de tecnologías de información de la UPeU.
El algoritmo ha determinado 3 grupos, y por cada grupo ha identificado los atributos y características más relevantes de los servicios que brinda DIGESI. Para lograr el objetivo se utilizó la metodología CRISP-DM que es para proyectos de minería de datos.
CRISP-DM como metodología muy difundida y con los antecedentes de trabajo anteriores, permite un mayor respaldo al desarrollo del proyecto.
Descargas
Archivos adicionales
Publicado
2016-02-23
Número
Sección
Artículos
Licencia
Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access)